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A general classification of chirality measures is suggested, based on a new unifying 
scheme. Two classes of measures - congruity and resolution type - are defined and discussed. 
All chirality measures so far reported in the literature are found to belong to one of these two 
classes. At a higher level of unification, a more general construction is suggested that includes 
congruity and resolution measures as limiting cases. It is shown that congruity measures are 
nested in clusters of eight, generated by 23 combinations of their possible choice of a reference 
object (chiral vs. achiral), representation form (optimized vs. factorized) and type of chiral 
object under consideration (discrete vs. continuous). Each of the eight cases can have an infinite 
number of variations depending on the choice of averaging scheme. The problem of dimension- 
ality is discussed for congruity measures and is shown to be unresolvable only for the case of 
chirality measures based on the discrete metric (e.g. overlap measures). 

1. In t roduc t ion  

Since Guye's pioneering work on chirality functions, more than a century ago 
[1], there has been a continuing interest in the development of methods for the quan- 
tification of chirality (for a recent review see [2]). This interest continues unabated 
(for example, see [3-10]). 

An object X (no matter whether physical or geometrical) is chiral if and only if 
it is nonsuperposable upon its mirror image X ( X ¢ X). A chirality measure X that 
quantifies this property can equal zero if and only if  the object is achiral [2]: 

x ( X ) = 0  ¢* X = X .  (1) 

It has been demonstrated [11] that any two chiral objects in three- and higher- 
dimensional space can be chirally connected. This has immediate implications for 
the choice of functions suitable for use as chirality measures: no sign-changing con- 
tinuous functions, and, in particular, no continuous pseudoscalar functions, 
r/(X) = -r/(X), can be used as chirality measures in three- and higher-dimensions 
since such functions necessarily have chiral zeroes (~( X) = O for X ¢ X) and this vio- 
lates conditions (1). Thus, only sign-preserving functions can be used as chirality 
measures, and therefore, without loss of generality, we can restrict ourselves exclu- 
sively to nonnegative functions: 
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(2) 

It has been recognized [2] that  chirality measures can be subdivided into two 
types: those that gauge the extent to which a chiroid differs from an achiral refer- 
ence object (measures ofthefirst  kind) and those that gauge the extent to which two 
enant iomorphs differ from one another (measures o f  the second kind). Subse- 
quently it was demonstrated [6] that the Hausdorff  chirality measure [12] and the 
"cont inuous symmetry measure" [4] represent special cases within the same class of  
functions defined within the framework of a unified approach. Still, a more general 
unification would be highly desirable as "the measure of chirality is already becom- 
ing diverse and uncorrelated owing to different and inconsistent approaches of 
quantifying chirality" [9]. In what follows we introduce such a scheme and demon- 
strate that  all chirality measures suggested so far fit into that unified scheme. 

It is shown in section 2 that almost all chirality measures fall into the same 
class, one in which the degree of chirality of a chiroid X is defined with reference to 
another,  chiral or achiral object X~ef: the less these two objects match, the more  
chiral is X. We call these congruity-based chirality measures (congruity measures for 
short). There is, however, one approach [5] that does not fit into this picture and 
that  opens up an entirely new dimension in discussions of  chirality. In this 
approach, the degree of  chirality is estimated by the lowest resolution sufficient to 
recognize that  an object is chiral. Following Mezey [5], we call these resolution- 
based chirality measures (resolution measures for short) and discuss them in sec- 
tion 3. We conclude with section 4, which introduces a construction that unifies 
congruity and resolution measures. 

An important  problem is the extent to which chirality measures can be general- 
ized, and, in particular, the extent to which they can be applied to discrete vs. contin- 
uous and to sub- vs. equi-dimensional objects [9]. We discuss this below and show 
that most  chirality measures are universal enough to handle this problem, or at 
least can be easily upgraded to such a universal form. 

2. C o n g r u i t y  measures  

2.1. DEFINITIONS: DISTANCES AND MEASURES 

The measures of  this type, which seem to be the most  popular  ones due to their 
t ransparent  and natural  definition, gauge the chirality of a chiroid X by its degree 
of  nonsuperposabil i ty with a given reference object XreZ. The latter can be either an 
appropriately selected achiral object Xo (measures of  the first kind) or the enantio- 
morph.Y (measures of  the second kind). The choice of.~ as Xref seems to have cer- 
tain advantages since this object is fully defined by reflection. In the case of  an 
achiral reference object Xo, shape and size are not  rigidly fixed, and need to be var- 
ied depending on the mutual  orientation of  J( and Xo. This makes the problem 
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more complex, especially in the case of continuous sets where the number of 
degrees of freedom determining the shape and size of Xo may be infinite. 

In order to measure the degree of congruity of X and Xref, a discrimination func- 
tion d(x, W) has to be chosen, which is defined on X ® Xref and which shows how 
far or how distinct are x e X and x' e Xref. This is usually a distance (in most cases 
Euclidean) between x and )d in the embedding space, but other functions can also be 
used, subject to restrictions discussed below. Obviously, this function depends 
parametrically on the mutual spatial arrangement of X and Xref. 

For a given mutual arrangement of J( and X~ef determined by a set of orienting 
parameters q (which include translations and rotations of X and .grey, as well as the 
shape and size of Xref if it is achiral), the deviation of x e X from -grey is described 
by a function g(x; q) which is defined in terms ofd(x, x'). Usually, 

g(x, q) = inf d(x, x') for given q,  (3) 
x' eX' 

although other expressions can be used as well, including various types of aver- 
aging. 

Based on g(x; q), we define the @-distance between X and Xref as its power-p 
average 

or, more generally, as a weighted average 

[fx ~__((x; q)co(x) dx] lip 

@ ( q ) =  L L (x) dx 

(4) 

(5) 

with a weight function w(x). 
The denominator of the right-hand part of eq. (5) is a measure of set X: volume 

or area, ifw(x) = 1; mass, ifw(x) is density; number of electrons, ifw(x) is electron 
density; etc. The numerator is the norm IIg(x; q)llp of function g(x; q) in the L p 
space of integrable functions [13]. Expressions (4)-(5) are quite general and 
include, as specific cases, regular average (p = 1), root-mean-square average 
(p = 2), and harmonic mean (17 = - 1). Atp -+ co they turn into [13] 

Goo(q) = supg(x; q).  (6) 
x e X  

They are equally applicable to both continuous and discrete objects. For conveni- 
ence, a discrete chiroid Q = {xili E I} (with the index set I being a finite or infinite 
subset of integers) is considered to be embedded into a continuous set X : Q c X, 
and is described by a discrete weight function, w(x), represented by a weighted 
s u m  
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~(x) = ~ wi6(x - xi) (7) 
i e I  

of Dirac 6-functions with weighting factors wi. Substituted in (5), function (7) 
turns integration into summation 

that for wi = 1 reduces @ to distance functions D? 

D? = ~--~g~(xi, q) , N = c a r d  I ,  

discussed earlier [6] in their application to chirality measures. 
One more remark should be made regarding the integration domain in eqs. (4)- 

(5). Strictly speaking, the @-distance that characterizes the degree of nonsuperpo- 
sability of a chiroid X and a reference object J~'ref should reflect contributions 
from both X and Xref. This can be attained by extending integration over the union 
X U Xref. Function g(x; q) (eq. (3)) has to be correspondingly modified to 

inf d(x,x I) f o r x E X ,  
~ e X~f 

g(x,q) = i n f  d(x',x) for X ~ X r e  f . 

We are now in a position to define a congruity measure based on the @-distance 
between X and Xref. Function @(q) cannot be directly used as a chirality measure 
unless parameter q is properly selected. There are two ways to do this. The first is 
to optimize Gp(q) with respect to q, and to use @(q) at optimum superimposition 
of X and Xre f a s  a chirality measure (eq. (8)): 

Xc = m i n @ ( q ) .  (8) 
q 

Another approach is to select a set {q~[s ~ S} of different mutual arrangements 
o~ of X and X~ef according to expected symmetry properties of X, and to define a 
chirality measure as a product of respective @ (q.~)'s for different q~'s (eq. (9)): 

Zc= I-[ Gp(qA. (9) 
sES 

The forms of chirality measures defined by eq. (8) and (9) can be called optimized 
and factorized, respectively. Optimized-form chirality measures have obvious 
advantages, as they are well-defined and independent of partictflar choices of 
parameters q. 

Definitions (8)-(9) impose a constraint on the choice of discrimination func- 
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tions d(x, x J) and g(x, q): they have to be nonnegative, since otherwise function 
G(q), and, correspondingly, its global minimum (8) (if it exists) or product (9), can 
be negative, which contradicts condition (2) and hence condition (1). 

2.2. DISCUSSION 

2.2.1. Examples of congruity measures in the literature 
Any given congruity measure is characterized by a particular choice of reference 

object J(ref, discrimination function d(x, x'), power p and weight function w(x), 
and representation forms (8) or (9). This implies a virtually endless variety of mea- 
sures belonging to this type. Table 1 lists congruity measures reported in the litera- 
ture. It is interesting to note that for a particular choice of Euclidean metric 
d(x, ~d), discrete weight function w(x) (eq. (7)), andp  = 2, three of the four possible 
combinations of kinds and forms of measure have already been proposed by differ- 
ent authors [3,4,7] (entries 5-7 in table 1). Measures Xv [14] and W [15] (entries 12 
and 18) represent another example of a related pair of measures suggested by differ- 
ent authors. 

Measures of the second kind prevail among those listed in table 1. Inspection of 
the table also shows that in most cases (entries 2-11) the Euclidean metric has 
been used as the discrimination function d(x, )d), mainly for discrete sets. The only 
example of a measure defined for both discrete and continuous cases is the Haus- 
dorff measuref (Q)  [2] (entries 2-3), but there is no reason why most other mea- 
sures cannot be modified to cover continuous sets as well, by a proper choice of a 
continuous weight function (e.g. w(x) = 1) instead of the discrete function (7). 

Symmetry coordinates. Chirality measure d [2] (entry 11 in table 1) represents a 
special case, considerably different from other entries in table 1. Its specific feature 
is that both chiroid X and an achiral reference object Xo are represented by their 
single points Xl and Xo in the conformational space: 

x = { x l } ,  Xo = {Xo) .  

As a result, eqs. (3) and (5) represent trivial transformations and the Gp-distance 
in this case is merely a Euclidean distance d(xl, Xo) between Xl and xo in symmetry 
coordinates [16]. 

2.2.2. The problem of dimensionality 
It has been noted [2,9] that overlap measures as defined in [14] cannot be applied 

to sub-dimensional objects. This problem of dimensionality is seen in [9] as "one 
of the main obstacles that stands in the way towards generalizing and unifying the 
measure ofchirality", or, in other words, as a general limitation inherent to all chir- 
ality measures. The analysis of eqs. (3)-(5) shows, however, that this presents a 
problem only in the case of the discrete metric [17] 

1 if x ¢ ) d ,  (10) d(x,x ~) 
L 0 if x = x' 
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that  underlies the measure  Xv (entry 12 in table 1). Indeed, subst i tu ted in (3), func- 
t ion (10) leads to the step funct ion 

1 if X • X f"l Xref  , 

g ( x ) =  0 i f x e X N X r e f .  (11) 

Since in mos t  cases the intersection X N Xref of sub-dimensional  X and Xref is a 
set of  measure  zero, funct ion Gp -- 1 and thus fails to gauge different degrees of  
nonsuperposabi l i ty  of  X and Xref. For  similar reasons, chirality measures  based on 
the discrete metric (10) are inefficient as applied to discrete chiral sets. However ,  
con t inuous  metrics d(x, x'), e.g. Euclidean distance as in the case of  the H a u s d o r f f  
measure  f ( Q )  (entry 3 in table 1), p roduce  cont inuous  nonzero  funct ions g(x). 
Hence,  these metrics lead to nontrivial  integrals (4)-(5) and thus define reasonably  
sensitive chirality measures  for sub-dimensional  sets. 

2.2.3. Chiralityfunctions related to congruity measures 
Chirality polynomials. Al though  chirality polynomials  have been developed 

based on entirely different principles [18], they demons t ra te  a remarkable  resem- 
blance to some congrui ty  measures.  

Given a symmetr ic  skeleton Q = {xili~I} with a set of  l igand paramete rs  
A = {A/I/e I} associated with its sites xi, the discr iminat ion funct ion g for a mea-  
sure of, say, the second kind can be defined as 

g(xi, q) = IAi -  A~/[ if x i e Q  is superposed with ~ e Q .  

Subst i tu t ion in (5) with w = ~ 6(x - xi) a n d p  = 1 gives the Gp-function 
i 

=  'il, 
i e I  

which, subst i tu ted in (9), yields 

Xc = l--[ Z IAi - A'i]" (12) 
seS  ie I  

For  skeletons in category a [19] we can select superposi t ions  of  Q and Q in which 
only two reflect ion-related sites, i and  k = cri, have different l igand parameters .  
This reduces the sum in eq. (12) to a single term, 2- I Ai - Ak], and thus eq. (12) trans- 
forms into 

Xc- - - -C 'HIAi- -Ak]  ( c = c o n s t ,  k = c r i ) ,  (13) 
i<k 

which is exactly the absolute value of  the cor responding  chirality po lynomia l  
[18,191 

P = c .  H ( ) ~ i  --  Ak) (C = const,  k = ~ri). 
i<k 



N. Weinberg, K. Mislow / A unification of  chirality measures 43 

The situation is different for skeletons in category b [19]. Here the presence of 
the sum in eq. (12) is unavoidable. Still, the expressions for chirality measure (12) 
and the corresponding chirality polynomial are fairly close. Thus, for the square 
{ 1,2, 3, 4} they are 

Xc = [A1 -- A3[" [A2 -- /~1"  ([AI -- A2I + IN3 -- A4[)" ([A1 - A41-k IN3 - A2[) (14) 

and 

e = (/~1 - / ~ 3 ) "  (/~2 - / ~ 4 ) "  (/~1 - / ~ 2  -I- ,'~3 - )v4), 

respectively. The extra parentheses in (14) are required to provide the symmetry 
of Xc with respect to the permutation of indices. This is not needed in the case of P 
where the polynomial in the last parentheses already possesses the proper symme- 
try. The price is the existence of chiral zeroes for P, a problem that function Xc is 
free of. 

Rassat's function. Because Rassat's function 6F [20] has chiral zeroes, it violates 
condition (1) and is therefore not, strictly speaking, a chirality measure [2,12]. In 
the context of the present paper it is worth mentioning, however, that this function 
is close to being a congruity measure because it is defined in terms of G~-distances 
with respect to twofixedchiral reference objects, Xref andXref: 

~F = min G~(X, Xref; ql) -- min G~(X,Xref; q2)" (15) 
ql ch 

I fX is chosen as a reference object 

Xre f = X 

the second term in (15) vanishes and 6F reduces to the Hausdorff measure f(Q) 
[21. 

Hel- Or "s function. Chirality functions Z [ 15,21 ] (entries 19-21 in table 1) are for- 
mally constructed as congruity measures. However, because the respective discri- 
mination function d(x, Xo) can be negative (which, as discussed above, violates 
requirements (1)-(2)), functions Z do not qualify as chirality measures [2]. 

3. Resolu t ions  measures  

3.1. DEFINITIONS 

Practically all chirality measures proposed so far belong to the class of congru- 
ity measures. There is, however, a single example, Mezey's measure [5], which does 
not fit into that scheme. It is based on an entirely different approach, one that 
does not require a comparison between a chiroid and a reference object. Instead, it 
focuses on the analysis of the properties of the system of sets covering the chiroid. 
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In this section we present a general scheme for the construction of  chirality mea-  
sures of  this type. The examples chosen to illustrate this scheme are chiroids in 2D. 

Given a chiroid X, we start with a proper choice of  covering sets uk(r) c X [17]. 
These are selected to be all possible subsets of  X of  different sizes and locations in 
X, but  all o f  the same shape (triangles, squares, disks, cubes, balls, etc.). Two exam- 
ples of  such sets are given in fig. 1. Parameter  r, which determines the size of  Uk (r), 
is scaled so that  Uk(1) is the largest set of  a given shape inscribable into X: 

max  r = 1. 
uk(r) c X 

Index k characterizes a location of  uk(r) in X. We use K(r) to denote the set of  all 
k's labeling sets uk(r) of  a given size r. Because the system U = {uk(r)lkeK(r); 
r e [0, 1]} of  sets uk(r) forms a covering of  Z ,  their union for all sizes and locations 
equals Z: 

U U uk(r) = X .  (16) 
r kcK(r )  

Since set U includes all uk(r) c X, we call it the full inner covering of  X. 
Some restrictions may  be imposed on possible arrangements  of  uk(r) (cf. fig. 2), 

thus restricting U to its subsets 

UT= {uk(r)lkegT(r) c g(r);r~[O, 1]} ; f e Z .  

Index set T is used to label those and only those U~- which are coverings of  X 

U U uk(r) = X .  (17) 
r keKr(r)  

Like (16), union (17) includes sets uk(r) of  different sizes r, but the variety of  loca- 
tions k is now limited to a smaller subset K~(r) c K(r) due to the restrictions 
imposed. 

Based on (17), chiroid i" may  be approximated at a limited resolution R. This 
R-approximation of  X is defined as 

X X 

(a) (b) 

Fig. 1. Squares (a) and triangles (b) as covering elements uk(r) ofchiroid X. 
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(a) (b) 

(c) (d) 

Fig. 2. Some arrangements of uk(r) (shaded squares): (a) no restrictions; (b) no overlap allowed: 
Vk, meK~, uk N u,, = 0; (c) no overlap of interiors allowed (no restrictions on boundaries): Vk, 
m e K~, int(uk) N int(um) = 0; (d) no overlap of interiors allowed, and each square must share at least 
part  of its boundary with another one: Vk, meKr,  in t (uk)hint (urn)= 0, and VkeK~, 3metG,  

Uk n Um ¢ O. 

Xr(R) = U U uk(r). (18) 
r>~R keKr(r) 

It obviously follows f rom eqs. (17) and (18) that  for any r e T 

x (0) = x .  

One can call J( chiral at resolution R if every X~. (R);T e T is chiral, and achiral 
at resolution R if at least one X~( R) is achiral. 

I f  for every R ~ 0 all coverings U~- for different 7- e T include the same number  
of  sets Uk(R) of  size R, so that  

n~-(R) = card KT(R) = const = n(R), (19) 

then n(R) can be used as a measure of  resolution R. This funct ion increases as R 
decreases, which means  that  n(R) can be inverted to give R as a funct ion ofn .  One 
can call X chiralat leveln if it is chiral at resolution R = R(n). 

I f  X is chiral at resolution R1, this does not  necessarily mean  that  it is also chiral 
at a higher resolution R2 < R1. We call X apparently chiral at resolution RI if there 
exists an R2 < R1 such that  X is achiral at resolution R2, and genuinely chiral at reso- 
lution R1 if it is chiral at any resolution R ~< R1. 
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A resolution measure Xr is then defined as the upper bound of  resolutions R at 
which X is genuinely chiral: 

Xr = sup{RIVT : Xr(R) is chiral}. (20) 

Under  condition (19), X~ can also be defined in terms ofn. 
Apparent  chirality complicates the proper determination of chirality measure 

(20). This is, however, a property of a covering system rather than that  of  a covered 
set. We show in section 2.3 that for any chiroid X there exists at least one "good"  
covering system that does not  produce apparent  chirality. For  such a system, X is 
achiral at any R > X~ and chiral at any R < X~. 

3.2. MEZEY'S MEASURE: A DISCRETE RESOLUTION MEASURE 

Mezey's measure [5] is a discrete-valued measure, which uses n rather than R to 
represent the level of resolution. The covering sets uk(r) are squares (or cubes, for 
3D). Restrictions, similar to those of fig. 2(d), are imposed on their possible arran- 
gements, so that unions at given sizes rn form specific sets 

An = U u~(rn) 
k~K(r,) 

called "internal filling animals" [5]. Due to restrictions imposed on the structure 
of"an imals" ,  apparent  chirality is inherent to this approach [2,5]. 

3.3. A CONTINUOUS RESOLUTION MEASURE: A WAY TO AVOID APPARENT 

CHIRALITY 

As ment ioned above, if a covering system allows apparent  chirality, the determi- 
nation of  a resolution measure Xr becomes ambiguous. This problem can be easily 
avoided, however, if any restrictions on the arrangements of covering sets uk (r) are 
removed and the full covering system U is used to approximate X. R-approxima- 
tions X(R)  are then defined in terms of  its subsets as 

X(R) = U U uk(r). (21) 
r>>.R keK(r) 

For  a given R, X(R)  includes all uk(r) c X with r >1 R as subsets. 
If X(R) is achiral, for every uk(r); r>~R it includes both uk(r) and its mirror  

image cruk(r). Since it includes alluk(r) c X of size r I> R, every uk(r) in X has a sym- 
metry-related set cru/, (r) if r >/R. This means that  for any R1 > R the union 

X(R,) = U U uk(r) 
r>~Rl keK(r) 

of all u~(r); r>~R1 is achiral. That  is, apparent  chirality is completely excluded 
because i fX(R)  is achiral, then for any R1 > R, X(R1) c X(R)  is also achiral. 
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One can recognize a fuzzy-set structure [22] in the above construction if X is con- 
sidered as a fuzzy set and X(R)  is its crisp subset of  level R. Translation of  the defini- 
tion of  the resolution measure into fuzzy-set language is straightforward: given a 

f u z z y  set X with a membership function R(x); x ~ X ,  its resolution chirality is the max-  
imum level Ro below which all crisp subsets X ( R ) o f level R ( R < Ro ) are chir al. 

As seen from fig. 3, the fuzzy-set approach to resolution measures does not, in 
general, guarantee the absence of apparent chirality. There is, however, a simple 
geometrical model that  induces a fuzzy-set structure on X and that  is free of  this 
problem. 

Geometrical model. We define the width o f  the set X at its point  x as the size R of  
the largest square (cube, ball, disk, etc.) uk(R) ~ X containing x. This width, inter- 
preted as a membership function for x, defines a fuzzy-set structure on X. Its crisp 
subsets of  level R, X(R) ,  include those and only those points x where X is wider 
than R. Since any point x of X(R)  belongs to a set uk(r), r >>. R, set X ( R )  belongs to 
the union of  sets uk(r), r>.R. At the same time, since any point  x o f  any set uk(r), 
r i> R, belongs to X(R) ,  the union of sets uk(r), r >>. R, belongs to X(R) .  This means 
that  X ( R )  can be represented as union (21), and hence that  this geometrical model  
is equivalent to the one described at the beginning of  the section. The model  is there- 
fore free of  apparent  chirality. 

Figure 4 illustrates the model. Set X1 is chiral, but at limited resolution R > 1/2 
is perceived as an achiral object since its narrow parts, whose widths do not  exceed 
1/2, cannot  be "seen" at this resolution. At a higher resolution 1/2 > R > 1/4, X1 
is already "seen" as a chiral object, though some of its thinner port ion still remains 

Fig. 3. Chiral fuzzy set X, and its crisp subsets of different levels R, 0 < R1 < R2 < R3 < R4 < Rs: 
X = X(O) ~ X(R1) ~ X(R2) D X(R3) ~ X(R4) D X(Rs). Higher levels of membership function are 
represented by darker shading. Subsets X(RI), X(R3), and X(Rs) are achiral, whereas subsets X(R2) 

and X(R4) are chiral. 
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X 1 X 2 

II [ ~  ] [ I x  [ 
.1/2 ~ "~ 1- 114 

1/4 1/4 II 
(a) 

I 
(b) 

J 
(c) 

Fig. 4. (a) Sets X1 and X2. Perception of these sets at limited resolutions: (b) R > 1/2, (c) 1/2 > R > 1/4. 

"invisible". Chiral set X2, though of a very similar shape, is narrower in some parts 
and "remains" achiral even at 1/2 > R > 1/4. Accordingly, within the framework 
of the resolution-measure approach, );-2 should be considered less chiral than X1. 

3,4. RESOLUTION MEASURES FOR DISCRETE SETS: A CHEMICAL MODEL 

Although the definition of resolution measure in terms of covering elements 
uk(r) is, strictly speaking, applicable only to continuous sets, the equivalent fuzzy- 
set definition can be extended to the case of discrete sets. An example of such a case 
is the chirality of H(CH2)mC*HD(CH2)m D [23]. This molecule can be represented 
by a discrete set X of atoms x 4 C*. The fuzzy-set structure on X can be defined 
by the membership function 

1 
R(x)  = 

where k is the number of bonds separating atoms x and C*. All crisp subsets X(R) 
of level R>~l/m are achiral since they represent achiral fragments 
C(CHa)k_IC*HD(CH2)k_I C. At R <  1/m (k = m + 1), side chains H(CH2)m and 
(CH2)m D become different, and hence X(R) becomes chiral. That is, the resolution 
measure for set X is 

1 

tn 

Thus, the greater the value of m, the lower the degree ofchirality of the molecule. 
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4. The x(R) function o f  a fuzzy set: a conjunction o f  congruity and 
resolution measures 

A general problem with all resolution measures is their insufficient sensitivity 
to the shape of a chiroid (cf. fig. 5). Such measures only reveal at what stage the 
"image" of an object becomes chiral, but do not address the question of how chiral 
it becomes. That is, these measures do not distinguish between any two objects, 
no matter how different they are in shape, if the "images" of these objects become 
chiral at the same resolution. 

A simple but general solution of this problem can be achieved by extending the 
fuzzy set approach of the preceding section to include the congruity measures 
described in section 2. This can be done in the following way. Given an object X 
with a fuzzy set structure, we define its R-approximation X(R) as the crisp subset of 
level R. A congruity measure x(R) is then defined for each X(R); this function 
x(R) describes the degree of chirality of X at different resolutions R. Chiralities of 
two fuzzy sets can then be compared in terms of their x(R) functions (cf. fig. 6). In 
this construction, congruity measure Xc and resolution measure Xr represent the 
limiting cases 

Xc=x(R=O), 

Xr = min{Rlx(R) = 0}, 

and can be graphically represented as the points of intersection of the graph of 
x(R) with the coordinate axes X and R. 

It is implied in the above construction that, although the perception of shape is 
limited at a given resolution R, the chirality x(R) of the R-resolved image X(R) of 
X can be detected with infinite accuracy. A more consistent approach, however, 
should also take into account inaccuracy in determining x(R). Consider, for exam- 

(a) 

I 

- F 

I I  

(b) 

Fig. 5. Two chiroids of different shapes, but of the same resolution measure Xr. 
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Z2 

0 ~2r ~lr R 

Fig. 6. Schematic representation of functions x(R) for two chiroids, Jr" 1 and X2. Xlr and X~, their reso- 
lution measures, mark the resolutions R at which Xi(R) become chiral. Xlc and Xac are congruity mea- 
sures of these chiroids, considered as crisp sets (R = 0). Graphs of X1 (R) and x2(R) show that at low 

resolutions X1 is more chiral than X2, while at high resolutions the situation is reversed. 

ple, a geometr ica l  mode l  o f  the type  described in the preceding section. Ch i ro id  X,  
as depic ted  in fig. 7, represents  a square  o f  uni t  size wi th  a rectangle  1/2 x 1/4  
a t t a c he d  to the upper  pa r t  o f  its left  side. A t  resolut ions  R > 1//2 it is perceived as a 
square ,  i.e. as an  achiral  object.  S tar t ing  f rom R = 1/2, its r ec tangu la r  pa r t  
becomes  "v is ib le"  as well. This means  tha t  at  R = 1//2 we register  the change in the 
shape o f  X. D o  we detect  any  chira l i ty  at  this moment9. T h e  answer  depends  on  
h o w  we assess the chiral i ty.  I f  we fol low the def in i t ion  o f  chiral i ty  as nonsupe rposa -  

X 

1/4 ~ , ~  

(a) 

i j 
(b) 

i 
I 

I 
i I 

I . . . .  j 

(c) 

Fig. 7. Cryptochirality of a geometric set with a width-induced fuzzy structure (see text for details). 
(a) A chiroid X. (b) Its enantiomorph.g. (c) Superimposition of X and,g. The nonoverlapping parts 

are shaded. 
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bility of  X with its mirror  imageX, we have to overlap X wi thX and study nonover-  
lapping parts. In this case, the nonoverlapping parts are represented by two dis- 
joint  rectangles 1/2 × 1/4. Their width is 1/4, and hence they are "invisible" at 
resolution 1/4 < R ~< 1/2. This means that  at this resolution X seems achiral, since 
no mismatch  between X a n d X  can be detected. In other  words, even though we reg- 
ister the change in shape of  X at R = 1/2, its chirality remains undetectable until 
R~< 1/4. This is an example of  cryptochirality [23], which is the appearance of  a 
chiral object as seemingly achiral because its chirality is below the level of  resolu- 
tion (operational null). Another  interpretat ion for function x(R) is thus provided: 
given the operational  null level Xo (R), the intersection of  this level with the graph of  
x(R) determines the lowest resolution at which X is detectably chiral, and which 
therefore is an effective resolution measure Xr, associated with a given operat ional  
null Xo (R) (cf. fig. 8). 

As was shown in sections 2 and 3, all chirality measures so far reported in the lit- 
erature belong to one of  two general classes, congrui ty  or resolution measures.  
The concept  of  function x(R) introduced in this section finalizes the unification 
scheme, since it includes congruity and resolution measures as limiting cases. 
Strictly speaking, x(R) is not  a chirality measure.  This is a much  richer construc- 
tion since it maps the set of  chiral objects into the set of  functions ra ther  than into 
the set of  numbers,  as chirality measures do. However,  a number  of  different chiral- 
ity measures can be generated based on function x(R),  of  which probably  the 
most  interesting is the integral chirality measure 

X i=  x(R) dR. (22) 

This measure  is a uniform average o fx (R)  over the whole range [0, 1] o f  resolutions 

Zc ,vfK'l 

0 ]~r /~r K 

Fig. 8. Resolution measure at limited precision. The shaded area below the operational null level 
Xo (R) represents the range of undetectable chirality X (cryptochirality region). Only chirality above 
this level can be detected. As a result, an effective resolution measure Xr associated with the given 
operational null xo(R) is shifted towards zero with respect to the resolution measure Xr ° which corre- 

sponds to the limit of absolute accuracy (Xo (R) = 0). 
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R (cf. fig. 9(a)). If X is a crisp set, X(R) = Xc for all R's (cf. fig. 9(b)). Substituted 
in (22), this yields 

X.i : X c .  

If X is a fuzzy set and x(R) is a simple "yes-no" (or "chiral-achiral") function, 
free of apparent chirality (cf. fig. 9(c)), then 

1 if R<Ro, 
x (R)= 0 i f R > R o .  

(23) 

I n t e g r a t i o n  (22) g ives  

Xi = Ro = Xc. 

T h u s ,  Xc a n d  Xr c a n  be  r e g a r d e d  as p a r t i c u l a r  cases  o f  m e a s u r e  Xi. 

(c) 

0 ~r=Ro i 

Fig. 9. Geometrical interpretation of the integral chirality measure Xi as the area of  a trapezoid 
bounded by the coordinate axes and the graph of function x(R). (a) General case. (b) A crisp set: x(R) 
is constant and equals Xc, the congruity measure of the set. The area of  the shaded region is the prod- 
uct of  height Xc and the unit base and thus equals Xc. (c) A fuzzy set with "yes-no" function x(R) 
(eq. (23)): at low resolutions R > Ro, x(R) = 0 (achiral); at high resolutions R < Ro, X(R) = 1 (chiral). 
The area of the shaded region is the product of  the unit height and the base of length Ro, and thus 

equals Ro, which is, by definition (20), the resolution measure Xr. 
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